CS616 30 cm Water Content Reflectometer
High Accuracy and Precision
Designed for long-term monitoring
weather applications water applications energy applications gas flux and turbulence applications infrastructure applications soil applications

Overview

The CS616 measures the volumetric water content from 0% to saturation. The probe outputs a megahertz oscillation frequency, which is scaled down and easily read by a Campbell Scientific datalogger.

Read More

Benefits and Features

  • Compatible with most Campbell Scientific data loggers
  • High accuracy and high precision
  • Fast response time
  • Designed for long-term unattended water content monitoring
  • Compatible with AM16/32-series multiplexers, allowing measurement of multiple sensors
  • Probe rods can be inserted from the surface or buried at any orientation to the surface.

Images

Detailed Description

The CS616 is comprised of two 30-cm-long stainless steel rods connected to the measurement electronics. The circuit board is encapsulated in epoxy, and a shielded four-conductor cable is connected to the circuit board to supply power, enable probe, and monitor the output.

The CS616 measures the volumetric water content of porous media (such as soil) using the time-domain measurement method; a reflectometer (cable tester) such as the TDR100 is not required. This method consists of the CS616 generating an electromagnetic pulse. The elapsed travel time and pulse reflection are then measured and used to calculate soil volumetric water content.

Response Characteristics

The signal propagating along the parallel rods of the CS616 is attenuated by free ions in the soil solution and conductive constituents of the soil mineral fraction. In most applications, the attenuation is not enough to affect the CS616 response to changing water content, and the response is well described by the standard calibration. However, in soil with relatively high soil electrical conductivity levels, compacted soils, or soils with high clay content, the calibration should be adjusted for the specific medium. Guidance for making these adjustments is provided in the operating manual.

Specifications

Measurements Made Volumetric water content (VWC) of porous media (such as soil)
Measurement Range 0% to saturation
Water Content Accuracy ±2.5% VWC (using standard calibration with bulk EC of ≤ 0.5 dS m-1, bulk density of ≤ 1.55 g cm-3, and measurement range of 0% to 50% VWC)
Required Equipment Measurement system
Soil Suitability Long rods and lower frequency are well-suited for soft soil with low electrical conductivity (< 2 dS/m).
Rods Not replaceable
Sensors Not interchangeable
Operating Temperature Range 0° to +70°C
Probe-to-Probe Variability ±0.5% VWC in dry soil, ±1.5% VWC in typical saturated soil
Precision Better than 0.1% VWC
Resolution 0.1% VWC
Output ±0.7 V square wave (with frequency dependent on water content)
Current Drain
  • 65 mA @ 12 Vdc (when enabled)
  • 45 μA (quiescent typical)
Power Supply Voltage 5 Vdc minimum; 18 Vdc maximum
Enable Voltage 4 Vdc minimum; 18 Vdc maximum
Electromagnetic CE compliant (Meets EN61326 requirements for protection against electrostatic discharge.)
Rod Spacing 32 mm (1.3 in.)
Rod Diameter 3.2 mm (0.13 in.)
Rod Length 300 mm (11.8 in.)
Probe Head Dimensions 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Cable Weight 35 g per m (0.38 oz per ft)
Weight 280 g (9.9 oz) without cable

Compatibility

Note: The following shows notable compatibility information. It is not a comprehensive list of all compatible or incompatible products.

Dataloggers

Product Compatible Note
CR1000 (retired)
CR1000X
CR300
CR3000 (retired)
CR310
CR350
CR6
CR800 (retired)
CR850 (retired)

Additional Compatibility Information

RF Considerations

The RF emissions are below FCC and EU limits as specified in EN61326 if the CS616 is enabled less than 0.6 ms, and measurements are made less frequently than once a second. External RF sources can also affect the CS616 operation. Consequently, the CS616 should be located away from significant sources of RF such as ac power lines and motors.

Installation Tool

The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G was not used. It makes pilot holes into which the rods of the sensors can then be inserted. It replaces both the 14383 and 14384.

Data Logger Considerations

The reflectometer connects directly to one of the data logger’s single-ended analog inputs. A data logger control port is typically used to enable the CS616 for the amount of time required to make the measurement. Data logger instructions convert the probe square-wave output to period which is converted to volumetric water content using a calibration.

Frequently Asked Questions

Number of FAQs related to CS616: 36

Expand AllCollapse All

  1. Yes. The rugged design of the CS616/CS625 protects the probe electronics from water under these conditions. Many CS616/CS625 reflectometers have been working reliably in very wet conditions for more than ten years.

  2. Yes, as long as the data logger can detect a ±700 mV square wave over a frequency range of 29 to 67 kHz.

  3. The CS616 and CS625 are water-content reflectometers with measurement electronics built into the probe head. The electronics generate a signal, which is sent directly to the data logger. The CS610-L, and other three-rod probes sold by Campbell Scientific, are TDR probes that have no electronic components and serve as wave guides for a time-domain reflectometer such as the TDR100.

  4. If a soil-specific calibration is performed, the CS616/CS625 may be used in soil with a maximum bulk electrical conductivity of 5 dS/m.

  5. Yes. For program examples and guidance on using a multiplexer with one of these reflectometers, see the CS616 and CS625 instruction manual.

  6. Running the cable through electrical conduit or PVC pipe will protect the cable from rodents. A trench 30 to 60 cm deep will protect it from most other human or animal activity. Some customers have found that extra cable can be coiled and left inside a box, such as an irrigation valve box or something similar. When using a box, seal any holes that are large enough for rodents to enter. When cables are exposed on the ground surface, some customers have found that wrapping the cables in the metal screening used for screen doors discourages animals from chewing on them.  

  7. No. The output is too fast to be measured on the pulse channel of a 21X or CR7.

  8. Some customers have tried to use the CS616 or CS625 to measure the moisture content within a tree, but the calibration proved to be problematic. Campbell Scientific cannot provide any specific guidance for this application.

  9. Each CS616 connects to a single-ended analog input channel, so a maximum of 16 CS616 reflectometers may be connected to the wiring panel of a CR1000. For more than 16, consider using a multiplexer such as the AM16/32B. With a multiplexer, it is possible to read 48 CS616 reflectometers using only three single-ended analog input channels of the CR1000.

  10. The cable for the sensors is rugged and resistant to damage from the sun and typical weather conditions. However, it is susceptible to damage from rodents, machinery, shovels, and so forth. Running the cable through electrical conduit or PVC pipe will help protect it, but this is not an absolute requirement.  In areas where rodent activity is low, direct burial in a trench is usually sufficient. A particularly vulnerable location is where the buried cables exit the ground and enter the enclosure housing the data logger. At that exit point, take steps to protect the cable from damage.  

Case Studies

South Korea: Damage from Freezing Roads
Korea Expressway Corporation (KEC) was established in 1969 to construct and manage expressways throughout South......read more
Delaware: Environmental Observing System
The Delaware Environmental Observing System (DEOS) is a real-time system dedicated to monitoring environmental conditions......read more
West Texas Mesonet
The West Texas Mesonet (WTM) project was initiated by Texas Tech University in 1999 to......read more